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8. Qubitization: Basics

 



Quantum Signal Processing

• The precursor to qubitization is Quantum Signal Processing (QSP)
• Physical model: Always-on magnetic field in one direction + instantaneous pulses

  

where   and
1. Degrees of P and Q are at most d and d-1, respectively.
2. P, Q has parity d and (d-1) mod 2.

3.  

eiϕ0ZeiθXeiϕ1Z⋯eiθXeiϕdZ = P(a) iQ(a) 1 − a2

iQ*(a) 1 − a2 P*(a)
,

θ = − 2 cos−1(a)

|P |2 + (1 − a2) |Q |2 = 1.



Qubitization: Unitary Encoding

   ,

where   and  .

eiϕ0ZeiθXeiϕ1Z⋯eiθXeiϕdZ→eiϕ′ 0Z̃U(H)eiϕ′ 1Z̃⋯U(H)eiϕ′ dZ̃

Z̃ = Za ⊗ Is U(H) = Za ⊗ H + Xa ⊗ 1 − H2
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Unitary Encoding

  is called as a unitary encoding of  

1.   is a unitary.
2. Alternatively, we can view it as a block-diagonal matrix:

      .

3. Of course, eventually we will need to discuss how to actually implement  , 
given     the Hamiltonian. (Hint: SELECT + PREPARE)

U(H) = Za ⊗ H + Xa ⊗ 1 − H2 H .

U(H)

U(H) = (H ⋅
⋅ ⋅ )

U(H)



Qubitization: Energy Eigenstate

   ,

where   and  .

Let’s first study the action of this operator on   where  

eiϕ0ZeiθXeiϕ1Z⋯eiθXeiϕdZ→eiϕ′ 0Z̃U(H)eiϕ′ 1Z̃⋯U(H)eiϕ′ dZ̃

Z̃ = Za ⊗ Is U(H) = Za ⊗ H + Xa ⊗ 1 − H2

|λ⟩s, H |λ⟩s = λ |λ⟩s .
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Qubitization: Relating to QSP

Qubitization:  

Quantum Signal Processing:  

 
 
How to relate the two?

eiϕ0ZR(λ)eiϕ1Z⋯R(λ)eiϕdZ

eiϕ0ZeiθXeiϕ1Z⋯eiθXeiϕdZ

R(λ) = λZ + 1 − λ2X .
eiθX = I cos(θ) + i sin(θ)X
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Aborbing the phases

Qubitization:  

Quantum Signal Processing:  

 
 
How to relate the two?

eiϕ0ZR(λ)eiϕ1Z⋯R(λ)eiϕdZ

eiϕ0ZeiθXeiϕ1Z⋯eiθXeiϕdZ

R(λ) = λZ + 1 − λ2X .
eiθX = I cos(θ) + i sin(θ)X
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Qubitization vs. Quantum Signal Processing

  

where  . Thus, using qubitization, we can implement (upon measuring 
 ) 

 ,
(for a polynomial that satisfies the conditions in QSP.)

eiϕ0ZeiθXeiϕ1Z⋯eiθXeiϕdZ = P(a) iQ(a) 1 − a2

iQ*(a) 1 − a2 P*(a)
,

θ = cos−1(a)
|0⟩

|ψ⟩s → P(H) |ψ⟩
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Qubitization vs. Quantum Signal Processing

Key point: Given any polynomial that satisfies the conditions in QSP, we can 
implement

 .|ψ⟩s → P(H) |ψ⟩
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Qubitization & Quantum Signal Processing

  

where  . 
1. Degrees of P and Q are at most d and d-1, respectively.
2. P, Q has parity d and (d-1) mod 2.

3.  

eiϕ0ZeiθXeiϕ1Z⋯eiθXeiϕdZ = P(a) iQ(a) 1 − a2

iQ*(a) 1 − a2 P*(a)
,

θ = cos−1(a)

|P |2 + (1 − a2) |Q |2 = 1.
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A more global picture

 ,

where   and  .

Cost = Cost of  Degree of the polynomial

eiϕ′ 0Z̃U(H)eiϕ′ 1Z̃⋯U(H)eiϕ′ dZ̃

Z̃ = Za ⊗ Is U(H) = Za ⊗ H + Xa ⊗ 1 − H2

U(H) ×

 Z(ϕ0)  U(H)  Z(ϕ1)  U(H)  Z(ϕ2)  U(H)  Z(ϕ3)
AOI



Hamiltonian Simulation

Key question: How to find a polynomial approximation of 
 ?

Fortunately, there is already a wealth of literature on this matter.

e−Ht = cos(Ht) − i sin(Ht)



Chebyshev Polynomial

Definition:   such that  .

This is frequently used in approximating arbitrary functions.

Tn(x) Tn(cos θ) = cos(nθ)

first kind

Cos120 2050 1

rescatB cos 2 as R SLsince



Jacobi-Anger expansion

 

 

To achieve   error, it suffices to choose to truncate the polynomial at

 ’th order.  [Low and Chuang (2016), Gilyen, Su, Low, and Wiebe 

(2019)]

cos(xt) = J0(t) + 2
∞

∑
k=1

(−1)kJ2k(t)T2k(x)

sin(xt) = 2
∞

∑
k=0

(−1)kJ2k+1(t)T2k+1(x)

ϵ

O | t | + log(1/ϵ)
log (e + log(1/ϵ)

| t | )

Taylor expansion

OCHIMIE



Success Probability

Success probability = norm of  . Thus, if   is a unitary, the success probability is 
1.

Even for Hamiltonian simulation, because we truncate the polynomial to some finite degree, 
  will not be exactly unitary. 

But that’s okay, because (i) we can make   “as unitary as we want” by making the 
degree larger.

P(H) |ψ⟩ P(H)

P(H)

P(H)

p a

IP t day101 l



Remaining questions

1. How do we implement the unitary oracle?
2. Examples?
3. Next time!

no Union encoding of H
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